
Tezos — a self-amending crypto-ledger
White paper
L.M Goodman

September 2, 2014

Changes between the original paper and our current implementation are
indicated in red.

“Our argument is not flatly
circular, but something like it.”

— Willard van Orman Quine

Abstract

We present Tezos, a generic and self-amending crypto-ledger. Tezos
can instantiate any blockchain based ledger. The operations of a regular
blockchain are implemented as a purely functional module abstracted into
a shell responsible for network operations. Bitcoin, Ethereum, Cryptonote,
etc. can all be represented within Tezos by implementing the proper in-
terface to the network layer.

Most importantly, Tezos supports meta upgrades: the protocols can
evolve by amending their own code. To achieve this, Tezos begins with
a seed protocol defining a procedure for stakeholders to approve amend-
ments to the protocol, including amendments to the voting procedure
itself. This is not unlike philosopher Peter Suber’s Nomic[3], a game built
around a fully introspective set of rules.

In addition, Tezos’s seed protocol is based on a pure proof-of-stake
system and supports Turing complete smart contracts. Tezos is imple-
mented in OCaml, a powerful functional programming language offering
speed, an unambiguous syntax and semantic, and an ecosystem making
Tezos a good candidate for formal proofs of correctness.

Familiarity with the Bitcoin protocol and basic cryptographic primi-
tives are assumed in the rest of this paper.

1

Contents
1 Introduction 3

2 Self-amending cryptoledger 3
2.1 Mathematical representation . 3
2.2 The network shell . 4

2.2.1 Clock . 4
2.2.2 Chain selection algorithm 4
2.2.3 Network level defense . 5

2.3 Functional representation . 5
2.3.1 Validating the chain . 5
2.3.2 Amending the protocol . 6
2.3.3 RPC . 7

3 Seed protocol 8
3.1 Economy . 8

3.1.1 Coins . 8
3.1.2 Mining and signing rewards 8
3.1.3 Lost coins . 9
3.1.4 Amendment rules . 9

3.2 Proof-of-stake mechanism . 10
3.2.1 Overview . 10
3.2.2 Clock . 11
3.2.3 Generating the random seed 11
3.2.4 Follow-the-coin procedure 12
3.2.5 Mining blocks . 13
3.2.6 Signing blocks . 13
3.2.7 Weight of the chain . 14
3.2.8 Denunciations . 14

3.3 Smart contracts . 14
3.3.1 Contract type . 14
3.3.2 Origination . 15
3.3.3 Transactions . 15
3.3.4 Storage fees . 16
3.3.5 Code . 16
3.3.6 Fees . 16

4 Conclusion 17

2

1 Introduction
In the first part of this paper, we will discuss the concept of abstract blockchains
and the implementation of a self-amending crypto-ledger. In the second part,
we will describe our proposed seed protocol.

2 Self-amending cryptoledger
A blockchain protocol can be decomposed into three distinct protocols:

- The network protocol discovers blocks and broadcasts transactions.

- The transaction protocol specifies what makes a transaction valid.

- The consensus protocol forms consensus around a unique chain.

Tezos implements a generic network shell. This shell is agnostic to the
transaction protocol and to the consensus protocol. We refer to the transaction
protocol and the consensus protocol together as a “blockchain protocol”. We
will first give a mathematical representation of a blockchain protocol and then
describe some of the implementation choices in Tezos.

2.1 Mathematical representation
A blockchain protocol is fundamentally a monadic implementation of concurrent
mutations of a global state. This is achieved by defining “blocks” as operators
acting on this global state. The free monoid of blocks acting on the genesis state
forms a tree structure. A global, canonical, state is defined as the minimal leaf
for a specified ordering.

This suggests the following abstract representation:

- Let (S,≤) be a totally ordered, countable, set of possible states.

- Let ⊘ /∈ S represent a special, invalid, state.

- Let B ⊂ SS∪{⊘} be the set of blocks. The set of valid blocks is B ∩ SS.

The total order on S is extended so that ∀s ∈ S,⊘ < s. This order deter-
mines which leaf in the block tree is considered to be the canonical one. Blocks
in B are seen as operators acting on the state.

All in all, any blockchain protocol1 (be it Bitcoin, Litecoin, Peercoin, Ethereum,
Cryptonote, etc) can be fully determined by the tuple:(

S,≤,⊘,B ⊂ SS∪{⊘}
)

1GHOST is an approach which orders the leafs based on properties of the tree. Such an
approach is problematic for both theoretical and practical reasons. It is almost always better
to emulate it by inserting proofs of mining in the main chain.

3

The networking protocol is fundamentally identical for these blockchains.
“Mining” algorithms are but an emergent property of the network, given the
incentives for block creation.

In Tezos, we make a blockchain protocol introspective by letting blocks act
on the protocol itself. We can then express the set of protocols recursively as

P =
{(

S,≤,⊘,B ⊂ S(S×P)∪{⊘}
)}

2.2 The network shell
This formal mathematical description doesn’t tell us how to build the block tree.
This is the role of the network shell, which acts as an interface between a gossip
network and the protocol.

The network shell works by maintaining the best chain known to the client.
It is aware of three type of objects. The first two are transactions and blocks,
which are only propagated through the network if deemed valid. The third are
protocols, OCaml modules used to amend the existing protocol. They will be
described in more details later on. For now we will focus on transaction and
blocks.

The most arduous part of the network shell is to protect nodes against
denial-of-service attacks.

2.2.1 Clock

Every block carries a timestamp visible to the network shell. Blocks that appear
to come from the future are buffered if their timestamps are within a few minutes
of the system time and rejected otherwise. The protocol design must tolerate
reasonable clock drifts in the clients and must assume that timestamps can be
falsified.

2.2.2 Chain selection algorithm

The shell maintains a single chain rather than a full tree of blocks. This chain
is only overwritten if the client becomes aware of a strictly better chain.

Maintaining a tree would be more parsimonious in terms of network commu-
nications but would be susceptible to denial-of-service attacks where an attacker
produces a large number of low-scoring but valid forks.

Yet, it remains possible for a node to lie about the score of a given chain, a
lie that the client may only uncover after having processed a potentially large
number of blocks. However, such a node can be subsequently ignored.

Fortunately, a protocol can have the property that low scoring chains exhibit
a low rate of block creation. Thus, the client would only consider a few blocks
of a “weak” fork before concluding that the announced score was a lie.

4

2.2.3 Network level defense

In addition, the shell is “defensive”. It attempts to connect to many peers across
various IP ranges. It detects disconnected peers and bans malicious nodes.

To protect against certain denial of service attacks, the protocol provides
the shell with context dependent bounds on the size of blocks and transactions.

2.3 Functional representation
2.3.1 Validating the chain

We can efficiently capture almost all the genericity of our abstract blockchain
structure with the following OCaml types. To begin with, a block header is
defined as:
type raw_block_header = {

pred: Block_hash.t;
header: Bytes.t;
operations: Operation_hash.t list;
timestamp: float;

}

We are purposefully not typing the header field more strongly so it can
represent arbitrary content. However, we do type the fields necessary for the
operation of the shell. These include the hash of the preceding block, a list of
operation hashes and a timestamp. In practice, the operations included in a
block are transmitted along with the blocks at the network level. Operations
themselves are represented as arbitrary blobs.
type raw_operation = Bytes.t

The state is represented with the help of a Context module which encap-
sulates a disk-based immutable key-value store. The structure of a key-value
store is versatile and allows us to efficiently represent a wide variety of states.
module Context = sig

type t
type key = string list

val get: t -> key -> Bytes.t option Lwt.t
val set: t -> key -> Bytes.t -> t Lwt.t
val del: t -> key -> t Lwt.t
(*...*)

end

To avoid blocking on disk operations, the functions use the asynchronous
monad Lwt[4]. Note that the operations on the context are purely functional:
get uses the option monad rather than throwing an exception while set and
del both return a new Context. The Context module uses a combination
of memory caching and disk storage to efficiently provide the appearance of an
immutable store.

We can now define the module type of an arbitrary blockchain protocol:

5

type score = Bytes.t list
module type PROTOCOL = sig

type operation
val parse_block_header : raw_block_header -> block_header option
val parse_operation : Bytes.t -> operation option

val apply :
Context.t ->
block_header option ->
(Operation_hash.t * operation) list ->
Context.t option Lwt.t

val score : Context.t -> score Lwt.t
(*...*)

end

We no longer compare states directly as in the mathematical model, instead
we project the Context onto a list of bytes using the score function. List of
bytes are ordered first by length, then by lexicographic order. This is a fairly
generic structure, similar to the one used in software versioning, which is quite
versatile in representing various orderings.

Why not define a comparison function within the protocol modules? First
off it would be hard to enforce the requirement that such a function represent a
total order. The score projection always verifies this (ties can be broken based on
the hash of the last block). Second, in principle we need the ability to compare
states across distinct protocols. Specific protocol amendment rules are likely to
make this extremely unlikely to ever happen, but the network shell does not
know that.

The operations parse_block_header and parse_operation are exposed
to the shell and allow it to pass fully typed operations and blocks to the protocol
but also to check whether these operations and blocks are well-formed, before
deciding to relay operations or to add blocks to the local block tree database.

The apply function is the heart of the protocol:

- When it is passed a block header and the associated list of operations, it
computes the changes made to the context and returns a modified copy.
Internally, only the difference is stored, as in a versioning system, using
the block’s hash as a version handle.

- When it is only passed a list of operations, it greedily attempts to apply
as many operations as possible. This function is not necessary for the
protocol itself but is of great use to miners attempting to form valid blocks.

2.3.2 Amending the protocol

Tezos’s most powerful feature is its ability to implement protocol capable of
self-amendment. This is achieved by exposing two procedures functions to the
protocol:

- set_test_protocol which replaces the protocol used in the testnet with

6

a new protocol (typically one that has been adopted through a stakeholder
voter).

- promote_test_protocol which replaces the current protocol with the
protocol currently being tested

These functions transform a Context by changing the associated protocol.
The new protocol takes effect when the following block is applied to the chain.
module Context = sig

type t
(*...*)
val set_test_protocol: t -> Protocol_hash.t Lwt.t
val promote_test_protocol: t -> Protocol_hash.t -> t Lwt.t

end

The protocol_hash is the sha256 hash of a tarball of .ml and .mli files.
These files are compiled on the fly. They have access to a small standard library
but are sandboxed and may not make any system call.

These functions are called through the apply function of the protocol which
returns the new Context.

Many conditions can trigger a change of protocol. In its simplest version,
a stakeholder vote triggers a change of protocol. More complicated rules can
be progressively voted in. For instance, if the stakeholder desire they may pass
an amendment that will require further amendments to provide a computer
checkable proof that the new amendment respects certain properties. This is
effectively and algorithmic check of “constitutionality”.

2.3.3 RPC

In order to make the GUI building job’s easier, the protocol exposes a JSON-
RPC API. The API itself is described by a json schema indicating the types
of the various procedures. Typically, functions such as get_balance can be
implemented in the RPC.
type service = {

name : string list ;
input : json_schema option ;
output : json_schema option ;
implementation : Context.t -> json -> json option Lwt.t

}

The name is a list of string to allow namespaces in the procedures. Input
and output are optionally described by a json schema.

Note that the call is made on a given context which is typically a recent
ancestor of the highest scoring leaf. For instance, querying the context six
blocks above the highest scoring leaf displays the state of the ledger with six
confirmations.

The UI itself can be tailored to a specific version of the protocol, or generi-
cally derived from the JSON specification.

7

3 Seed protocol
Much like blockchains start from a genesis hash, Tezos starts with a seed pro-
tocol. This protocol can be amended to reflect virtually any blockchain based
algorithm.

3.1 Economy
3.1.1 Coins

There are initially 10 000 000 000 (ten billion) coins (the initial extent of the
token supply will be the number of tokens issued during the crowdsale and not
specifically “10 billion”, which was merely a placeholder. This change in size
has no effect on the principal at hand), divisible up to two decimal places (for
the sake of precision we may in actuality be using eight digits after the decimal).
We suggest that a single coin be referred to as a “tez” and that the smallest
unit simply as a cent. We also suggest to use the symbol ꜩ (\ua729, “Latin
small letter tz”) to represent a tez. Therefore 1 cent = ꜩ0.01 = one hundreth
of a tez.

3.1.2 Mining and signing rewards

Principle We conjecture that the security of any decentralised currency re-
quires to incentivize the participants with a pecuniary reward (we are in the
process of finalizing the rewards schedule at the moment). As explained in the
position paper, relying on transaction costs alone suffers from a tragedy of the
commons. In Tezos, we rely on the combination of a bond and a reward.

Bonds are one year (bonds will now only last a single cycle, given the high
opportunity cost and little benefit to security of extending the bonding period
past one cycle) security deposits purchased by miners (endorsers will also be
required to purchase bonds). In the event of a double signing, these bonds are
forfeited.

After a year (cycle), the miners (and endorsers) receive a reward along with
their bond to compensate for their opportunity cost. The security is primarily
being provided by the value of the bond and the reward need only be a small
percentage of that value.

The purpose of the bonds is to diminish the amount of reward needed, and
perhaps to use the loss aversion effect to the network’s advantage.

Specifics In the seed protocol, mining a block offers a reward of ꜩ512 and
requires a bond of ꜩ1536. Signing a block offers a reward of 32∆T−1 tez where
∆T is the time interval in minutes between the block being signed and its
predecessor. There are up to 16 signatures per block and signing requires no
bond.These numbers were based on a supply of 10 billions tokens and we will
tweak them accordingly. We may increase the number of signatures per block
as well as we’ve found in simulations it can strongly increase the difficulty of
forks.

8

Thus, assuming a mining rate of one block per minute, about 8% of the
initial money mass should be held in the form of safety bonds after the first
year. subject to change based on the adjustment of the parameters above.

The reward schedule implies at most a 5.4% nominal inflation rate (the
total block rewards will still start at about 5% per year, but we may add an
asymptotic cap to the total number of tokens. We think it’s irrelevant when the
governance model is aligned with the token holder’s interest, but it is important
to some people so we’re reluctantly considering it). Nominal inflation is neutral,
it neither enrishes nor impoverishes anyone2.

Note that the period of a year is determined from the block’s timestamps,
not from the number of blocks. This is to remove uncertainty as to the length
of the commitment made by miners.

Looking forward The proposed reward gives miners a 33% return on their
bond (we’re currently revising these parameters but will soon finalize a method
that makes sense for all parties). This return needs to be high in the early days
as miners and signers commit to hold a potentially volatile asset for an entire
year (bonds will only last for a cycle and not a full year).

However, as Tezos mature, this return could be gradually lowered to the
prevailing interest rate. A nominal rate of inflation below 1% could safely be
achieved, though it’s not clear there would be any point in doing so.

3.1.3 Lost coins

In order to reduce uncertainty regarding the monetary mass, addresses showing
no activity for over a year (as determined by timestamps) are destroyed along
with the coins they contain (inactive addresses will no longer lose their funds
after one year as initially proposed in the white paper, they will only lose their
staking rights until they become active again. What it means is that if an
address is inactive, it will not be selected to create blocks (which would slow
down the consensus algorithm), and it will not be allowed to vote until it is
reactivated (to avoid uncertainty about participation rate).

3.1.4 Amendment rules

Amendments are adopted over election cycles lasting N = 217 = 131 072 blocks
each. Given the a one minute block interval, this is about three calendar months.
The election cycle is itself divided in four quarters of 215 = 32 768 blocks. This
cycle is relatively short to encourage early improvements, but it is expected that
further amendments will increase the length of the cycle (protocol upgrade votes
will be much more frequent in the first year in order to allow for rapid iteration.
As a security measure, the Tezos foundation will have a veto power expiring after
twelve months, until we rule out any kinks in the voting procedure). Adoption
requires a certain quorum to be met. This quorum starts at Q = 80% but

2In contrast, Bitcoin’s mining inflation impoverishes Bitcoin holders as a whole, and central
banking enrishes the financial sector at the expense of savers

9

dynamically adapts to reflect the average participation. This is necessary if
only to deal with lost coins.

First quarter Protocol amendments are suggested by submitting the hash of
a tarball of .ml and .mli files representing a new protocol. Stakeholders may
approve of any number of these protocols. This is known as “approval voting”,
a particularly robust voting procedure.

Second quarter The amendment receiving the most approval in the first
quarter is now subject to a vote. Stakeholders may cast a vote for, against or
can choose to explicitely abstain. Abstentions count towards the quorum.

Third quarter If the quorum is met (including explicit abstentions), and the
amendment received 80% of yays, the amendment is approved and replaces the
test protocol. Otherwise, it is rejected. Assuming the quorum reached was q,
the minimum quorum Q is updated as such:

Q← 0.8Q+ 0.2q.

The goal of this update is to avoid lost coins causing the voting procedure
to become stuck over time. The minimum quorum is an exponential moving
average of the quorum reached over each previous election.

Fourth quarter Assuming the amendment was approved, it will have been
running in the testnet since the beginning of the third quarter. The stakeholders
vote a second time to confirm they wish to promote the test protocol to the main
protocol. This also requires the quorum to be met and an 80% supermajority.

We deliberately chose a conservative approach to amendments. However,
stakeholders are free to adopt amendments loosening or tightening this policy
should they deem it beneficial

3.2 Proof-of-stake mechanism
3.2.1 Overview

Our proof-of-stake mechanism is a mix of several ideas, including Slasher[1],
chain-of-activity[2], and proof-of-burn. The following is a brief overview of the
algorithm, the components of which are explained in more details below.

Each block is mined by a random stakeholder (the miner) and includes mul-
tiple signatures of the previous block provided by random stakeholders (the
signers). Mining and signing both offer a small reward but also require making
a one year (unbonding will happen after one cycle, and not one year as initially
suggested. Prolonging the period longer than a cycle did not really improve se-
curity at the cost of immobilizing a lot of capital) safety deposit to be forfeited
in the event of a double mining or double signing.

10

The protocol unfolds in cycles of 2048 blocks. At the beginning of each cycle,
a random seed is derived from numbers that block miners chose and committed
to in the penultimate cycle, and revealed in the last. Using this random seed, a
follow the coin strategy is used to allocate migning rights and signing rights to
a specific addresses for the next cycle. See figure 1.

3.2.2 Clock

The protocol imposes minimum delays between blocks. In principle, each block
can be mined by any stakeholder. However, for a given block, each stakeholder
is subject to a random minimum delay. The stakeholder receiving the highest
priority may mine the block one minute after the previous block. The stake-
holder receiving the second highest priority may mine the block two minutes
after the previous block, the third, three minutes, and so on.

This guarantees that a fork where only a small fraction of stakeholder con-
tribute will exhibit a low rate of block creation. If this weren’t the case, a CPU
denial of service attacks would be possible by tricking nodes into verifying a
very long chain claimed to have a very high score.

3.2.3 Generating the random seed

Every block mined carries a hash commitment to a random number chosen by
the miner. These numbers must be revealed in the next cycle under penalty
of forfeiting the safety bond. This harsh penalty is meant to prevent selective
whitholding of the numbers which could be sued to attack the entropy of the
seed.

Malicious miners in the next cycle could attempt to censor such reveals,
however since multiple numbers may be revealed in a single block, they are very
unlikely to succeed.

All the revealed numbers in a cycle are combined in a hash list and the
seed is derived from the root using the scrypt key derivation function. The
key derivation should be tuned so that deriving the seed takes on the order of
a fraction of a percent of the average validation time for a block on a typical
desktop PC.

Figure 1: Four cycles of the proof-of-stake mechanism

11

3.2.4 Follow-the-coin procedure

In order to randomly select a stakeholder, we use a follow the coin procedure.

Principle The idea is known in bitcoin as follow-the-satoshi. The procedures
works “as-if” every satoshi ever minted had a unique serial number. Satoshis
are implicitly ordered by creation time, a random satoshi is drawn and tracked
through the blockchain. Of course, individual cents are not tracked directly.
Instead, rules are applied to describe what happens when inputs are combined
and spent over multiple output.

In the end, the algorithm keeps track of a set of intervals associated with
each key. Each intervals represents a “range” of satoshis. Unfortunately, over
time, the database becomes more and more fragmented, increasing bloat on the
client side.

Coin Rolls We optimize the previous algorithm by constructing large “coin
rolls” made up of 10 000 tez. There are thus about one million rolls in existence.
A database maps every roll to its current owner.

Each address holds a certain set of specific rolls as well as some loose change.
When we desire to spend a fraction of a full roll, the roll is broken and its serial
number is sent in a LIFO queue of rolls, a sort of “limbo”. Every transaction
is processed in a way that minimizes the number of broken rolls. Whenever an
address holds enough coins to form a roll, a serial number is pulled from the
queue and the roll is formed again.

The LIFO priority ensures that an attacker working on a secret fork cannot
change the coins he holds by shuffling change between accounts.

A slight drawback of this approach is that stake is rounded down to the
nearest integer number of rolls. However, this provides a massive improvement
in efficiency over the follow-the-satoshi approach.

While the rolls are numbered, this approach does not preclude the use of
fungibility preserving protocols like Zerocash. Such protocols can use the same
“limbo” queue technique.

Motivation This procedure is functionally different from merely drawing a
random address weighted by balance.

Indeed, in a secretive fork, a miner could attempt to control the generation
of the random seed and to assign itself signing and minting rights by creating
the appropriate addresses ahead of time. This is much harder to achieve if rolls
are randomly selected, as the secretive fork cannot fake ownership of certain
rolls and must thus try to preimage the hash function applied to the seed to
assign itself signing and minting rights.

Indeed, in a cycle of length N = 2048, someone holding a fraction f of the
rolls will receive on average fN mining rights, and the effective fraction received,

12

f0 will have a standard deviation of√
1

N

√
1− f

f
.

If an attacker can perform a brute-force search through W different seeds,
then his expected advantage is at most3(√

2 log(W)

N

√
1− f

f

)
fN

blocks. For instance, an attacker controlling f = 10% of the rolls should
expect to mine about 205 blocks per cycle. In a secret fork where he attempts
to control the seed, assuming he computed over a trillion hashes, he could assign
itself about 302 blocks, or about 14.7% of the blocks. Note that:

- The hash from which the seed is derived is an expensive key derivation
function, rendering brute-force search impractical.

- To make linear gains in blocks mined, the attacked needs to expend a
quadratically exponential effort.

3.2.5 Mining blocks

The random seed is used to repeatedly select a roll. The first roll selected
allows its stakeholder to mine a block after one minute, the second one after
two minutes — and so on.

When a stakeholder observes the seed and realizes he can mint a high priority
block in the next cycle, he can make a security deposit.

To avoid a potentially problematic situation were no stakeholder made a
safety deposit to mine a particular block, after a 16 minutes delay, the block
may be mined without a deposit.

Bonds are implicitely returned to their buyers immediately in any chain
where they do not mine the block.

3.2.6 Signing blocks

As it is, we almost have a working proof of stake system. We could define a
chain’s weight to be the number of blocks. However, this would open the door
to a form of selfish mining.

We thus introduce a signing scheme. While a block is being minted, the
random seed is used to randomly assign 16 signing rights to 16 rolls.

The stakeholders who received signing rights observe the blocks being minted
and then submit signatures of that blocks. Those signatures are then included

3this is a standard bound on the expectation of the maximum of W normally distributed
variable

13

in the next block, by miners attempting to secure their parent’s inclusion in the
blockchain.

The signing reward received by signers is inversely proportional to the time
interval between the block and its predecessor.

Signer thus have a strong incentive to sign what they genuinely believe to
be the best block produced at one point. They also have a strong incentive to
agree on which block they will sign as signing rewards are only paid if the block
ends up included in the blockchain.

If the highest priority block isn’t mined (perhaps because the miner isn’t on
line), there could be an incentive for signers to wait for a while, just in case the
miner is late. However, other signers may then decide to sign the best priority
block, and a new block could include those signatures, leaving out the holdouts.
Thus, miners are unlikely to follow this strategy.

Conversely, we could imagine an equilibrium where signers panic and start
signing the first block they see, for fear that other signers will do so and that a
new block will be built immediately. This is however a very contrived situation
which benefits no one. There is no incentive for signers to think this equilibrium
is likely, let alone to modify the code of their program to act this way. A
malicious stakeholder attempting to disrupt the operations would only hurt
itself by attempting to follow this strategy, as others would be unlikely to follow
suit.

3.2.7 Weight of the chain

The weight is the number of signatures.

3.2.8 Denunciations

In order to avoid the double minting of a block or the double signing of a block,
a miner may include in his block a denunciation.

This denunciation takes the form of two signatures. Each minting signature
or block signature signs the height of the block, making the proof of malfeasance
quite concise.

While we could allow anyone to denounce malfeasance, there is really no
point to allow anyone else beyond the block miner. Indeed, a miner can simply
copy any proof of malfeasance and pass it off as its own discovery.4

Once a party has been found guilty of double minting or double signing, the
safety bond is forfeited.

3.3 Smart contracts
3.3.1 Contract type

In lieu of unspent outputs, Tezos uses stateful accounts. When those accounts
specify executable code, they are known more generally as contracts. Since an

4A zero-knowledge proof would allow anyone to benefit from denouncing malfeasances, but
it’s not particularly clear this carries much benefit.

14

account is a type of contract (one with no executable code), we refer to both as
”contracts” in full generality.

Each contract has a “manager”, which in the case of an account is simply
the owner. If the contract is flagged as spendable, the manager may spend the
funds associated with the contract. In addition, each contract may specify the
hash of a public key used to sign or mine blocks in the proof-of-stake protocol.
The private key may or may not be controlled by the manager.

Formally, a contract is represented as:
type contract = {

counter: int; (* counter to prevent repeat attacks *)
manager: id; (* hash of the contract's manager public key *)
balance: Int64.t; (* balance held *)
signer: id option; (* id of the signer *)
code: opcode list; (* contract code as a list of opcodes *)
storage: data list; (* storage of the contract *)
spendable: bool; (* may the money be spent by the manager? *)
delegatable: bool; (* may the manager change the signing key? *)

}

The handle of a contract is the hash of its initial content. Attempting to
create a contract whose hash would collide with an existing contract is an invalid
operation and cannot be included in a valid block.

Note that data is represented as the union type.
type data =

| STRING of string
| INT of int

where INT is a signed 64-bit integer and string is an array of up to 1024
bytes. The storage capacity is limited to 16 384 bytes, counting the integers as
eight bytes and the strings as their length.

3.3.2 Origination

The origination operation may be used to create a new contract, it specifies
the code of the contract and the initial content of the contract’s storage. If the
handle is already the handle of an existing contract, the origination is rejected
(there is no reason for this to ever happen, unless by mistake or malice).

A contract needs a minimum balance of 1 to remain active. If the balance
falls below this number, the contract is destroyed.

3.3.3 Transactions

A transaction is a message sent from one contract to another contract, this
messages is represented as:
type transaction = {

amount: amount; (* amount being sent *)
parameters: data list; (* parameters passed to the script *)
(* counter (invoice id) to avoid repeat attacks *)
counter: int;
destination: contract hash;

}

15

Such a transaction can be sent from a contract if signed using the manager’s
key or can be sent programmatically by code executing in the contract. When
the transaction is received, the amount is added to the destination contract’s
balance and the destination contract’s code is executed. This code can make
use of the parameters passed to it, it can read and write the contract’s storage,
change the signature key and post transactions to other contracts.

The role of the counter is to prevent replay attacks. A transaction is only
valid if the contract’s counter is equal to the transaction’s counter. Once a
transaction is applied, the counter increases by one, preventing the transaction
from being reused.

The transaction also includes the block hash of a recent block that the client
considers valid. If an attacker ever succeeds in forcing a long reorganization
with a fork, he will be unable to include such transactions, making the fork
obviously fake. This is a last line of defense, TAPOS is a great system to
prevent long reorganizations but not a very good system to prevent short term
double spending.

The pair (account_handle, counter) is roughly the equivalent of an unspent
output in Bitcoin.

3.3.4 Storage fees

Since storage imposes a cost on the network, a minimum fee of ꜩ 1 is assessed
for each byte increase in the storage. For instance, if after the execution of a
transaction, an integer has been added to the storage and ten characters have
been appended to an existing string in the storage, then ꜩ 18 will be withdrawn
from the contract’s balance and destroyed.

3.3.5 Code

The language is stack based, with high level data types and primitives and strict
static type checking. Its design is insipired by Forth, Scheme, ML and Cat. A
full specification of the instruction set is available in[5]. This specification gives
the complete instruction set, type system and semantics of the language. It is
meant as a precise reference manual, not an easy introduction.

3.3.6 Fees

So far, this system is similar to the way Ethereum handles transaction. However,
we differ in the way we handle fees. Ethereum allows arbitrarily long programs
to execute by requiring a fee that increases linearly with the program’s execut-
ing time. Unfortunately, while this does provide an incentive for one miner to
verify the transaction, it does not provide such an incentive to other miners,
who must also verify this transaction. In practice, most of the interesting pro-
grams that can be used for smart contracts are very short. Thus, we simplify
the construction by imposing a hard cap on the number of steps we allow the
programs to run for.

16

If the hard cap proves too tight for some programs, they can break the execu-
tion in multiple steps and use multiple transactions to execute fully. Since Tezos
is amendable, this cap can be changed in the future, or advanced primitives can
be introduced as new opcodes.

If the account permits, the signature key may be changed by issuing a signed
message requesting the change.

4 Conclusion
We feel we’ve built an appealing seed protocol. However, Tezos’s true potential
lies in putting the stakeholders in charge of deciding on a protocol that they
feel best serves them.

References
[1] Vitalik Buterin. Slasher: A punitive proof-of-stake al-

gorithm. https://blog.ethereum.org/2014/01/15/
slasher-a-punitive-proof-of-stake-algorithm/, 2014.

[2] Ariel Gabizon Iddo Bentov and Alex Mizrahi. Cryptocurrencies without
proof of work. http://www.cs.technion.ac.il/~idddo/CoA.pdf, 2014.

[3] Peter Suber. Nomic: A game of self-amendment. http://legacy.earlham.
edu/~peters/writing/nomic.htm, 1982.

[4] Jérôme Vouillon. Lwt: a cooperative thread library. 2008.

[5] Tezos project. Formal specification of the tezos smart contract language.
https://tezos.com/pages/tech.html, 2014.

17

https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
http://www.cs.technion.ac.il/~idddo/CoA.pdf
http://legacy.earlham.edu/~peters/writing/nomic.htm
http://legacy.earlham.edu/~peters/writing/nomic.htm
https://tezos.com/pages/tech.html

	Introduction
	Self-amending cryptoledger
	Mathematical representation
	The network shell
	Clock
	Chain selection algorithm
	Network level defense

	Functional representation
	Validating the chain
	Amending the protocol
	RPC

	Seed protocol
	Economy
	Coins
	Mining and signing rewards
	Lost coins
	Amendment rules

	Proof-of-stake mechanism
	Overview
	Clock
	Generating the random seed
	Follow-the-coin procedure
	Mining blocks
	Signing blocks
	Weight of the chain
	Denunciations

	Smart contracts
	Contract type
	Origination
	Transactions
	Storage fees
	Code
	Fees

	Conclusion

