
Tezos: A Self-Amending Crypto-Ledger

Position Paper

L.M Goodman

August 3, 2014

“Laissez faire les propriétaires.”

— Pierre-Joseph Proudhon

Abstract

The popularization of Bitcoin, a decentralized crypto-currency has in-
spired the production of several alternative, or “alt”, currencies. Ethereum,
CryptoNote, and Zerocash all represent unique contributions to the crypto-
currency space. Although most alt currencies harbor their own source of
innovation, they have no means of adopting the innovations of other cur-
rencies which may succeed them. We aim to remedy the potential for
atrophied evolution in the crypto-currency space by presenting Tezos, a
generic and self-amending crypto-ledger.

Tezos can instantiate any blockchain based protocol. Its seed protocol
specifies a procedure for stakeholders to approve amendments to the proto-
col, including amendments to the amendment procedure itself. Upgrades
to Tezos are staged through a testing environment to allow stakeholders
to recall potentially problematic amendments.

The philosophy of Tezos is inspired by Peter Suber’s Nomic[1], a game
built around a fully introspective set of rules.

In this paper, we hope to elucidate the potential benefits of Tezos, our
choice to implement as a proof-of-stake system, and our choice to write it
in OCaml.

1

Contents

1 Motivation 2
1.1 The Protocol Fork Problem . 3

1.1.1 Keeping Up With Innovation 3
1.1.2 Economics of Forks . 4

1.2 Shortcomings of Proof-of-Work 5
1.2.1 Mining Power Concentration 5
1.2.2 Bad incentives . 6
1.2.3 Cost . 7
1.2.4 Control . 8

1.3 Smart Contracts . 8
1.4 Correctness . 9

2 Abstract Blockchains 10
2.1 Three Protocols . 10

2.1.1 Network Protocol . 10
2.1.2 Transaction Protocol . 11
2.1.3 Consensus Protocol . 11

2.2 Network Shell . 11

3 Proof-of-Stake 12
3.1 Is Proof-of-Stake Impossible? . 12
3.2 Mitigations . 13

3.2.1 Checkpoints . 13
3.2.2 Statistical Detection . 13

3.3 The Nothing-At-Stake Problem 14
3.4 Threat Models . 14

4 Potential Developments 15
4.1 Privacy Preserving Transactions 15

4.1.1 Ring Signatures . 15
4.1.2 Non Interactive Zero-knowledge Proofs of Knowledge . . . 15

4.2 Amendment Rules . 15
4.2.1 Constitutionalism . 15
4.2.2 Futarchy . 16

4.3 Solving Collective Action Problems 16
4.3.1 Raising Awareness . 16
4.3.2 Funding Innovation . 16

1 Motivation

In our development of Tezos, we aspire to address four problems we perceive
with Bitcoin[2]:

2

- The “hard fork” problem, or the inability for Bitcoin to dynamically in-
novate due to coordination issues.

- Cost and centralization issues raised by Bitcoin’s proof-of-work system.

- The limited expressiveness of Bitcoin’s transaction language, which has
pushed smart contracts onto other chains.

- Security concerns regarding the implementation of a crypto-currency.

1.1 The Protocol Fork Problem

1.1.1 Keeping Up With Innovation

In the wake of Bitcoin’s success, many developers and entrepreneurs have re-
leased alternative crypto-currencies (“altcoins”). While some of these altcoins
did not diverge dramatically from Bitcoin’s original code1, some presented in-
teresting improvements. For example, Litecoin introduced a memory hard
proof of work function2 and a shorter block confirmation time. Similarly,
Ethereum has designed stateful contracts and a Turing-complete transaction
language[3]. More important contributions include privacy-preserving ring sig-
natures (CryptoNote)[4] and untraceable transactions using SNARK (Zerocash)[5].

The rise of altcoins has inspired a vast competition in software innovation.
Cheerleaders for this Hayekian growth, however, miss a fundamental point: for
a cryptocurrency to be an effective form of money, it needs to be a stable store
of value. Innovation within a ledger preserves value through protecting the
network effect giving the currency its value.

To illustrate the problem of many competing altcoins, let us compare a
crypto-currency and a smart phone. When purchasing a smart phone, the con-
sumer is paying for certain features, such as the ability to play music, check
email, message his friends, and conduct phone calls.

Every few weeks, a newer smartphone model is released on the market which
often contains enhanced features. Though consumers who have the older model
may be jealous of those with the latest model, the introduction of newer smart-
phones does not render older smartphones dysfunctional.

This dynamic would change, however, if the newest phones could not com-
municate with older models. If the many models and styles of smartphone could
not be used together seamlessly, the value of each smartphone would be reduced
to the number of people with the same model.

Crypto-currencies suffer from the same fate as smartphones which are in-
compatible with one another; they derive their value from a network effect, or
the number of users who have given it value. To this end, any innovation that
occurs outside of a crypto-currency will either fail to build enough network effect
to be noticed, or it will succeed but undermine the value of the savings in the
old currency. If smartphones were incompatible with older models, there would

1wow, such unoriginal
2scrypt mining ASICs are now available

3

be either very little innovation or extremely disruptive innovation forcing older
phones into obsolescence.

Side-chains are an attempt to allow innovations which will retain compatibil-
ity with Bitcoin by pegging the value of a new currency to Bitcoin and creating
a two-way convertibility. Unfortunately, it’s unclear whether they will be flex-
ible enough to accommodate protocols substantially different fro Bitcoin. The
only alternative so far is to fork the protocol.

1.1.2 Economics of Forks

To understand the economics of forks, one must first understand that monetary
value is primarily a social consensus. It is tempting to equate a cryptocurrency
with its rules and its ledger, but currencies are actually focal points: they draw
their value from the common knowledge that they are accepted as money. While
this may seem circular, there is nothing paradoxical about it. From a game
theoretic perspective, the perception of a token as a store of value is stable so
long as it is widespread. Note that, as a ledger, Bitcoin is a series of 1s and 0s.
The choice to treat the amounts encoded within unspent outputs as balances is
a purely social consensus, not a property of the protocol itself.

Changes in the protocol are referred to as “forks”3. They are so called
because, in principle, users have the option to keep using the old protocol. Thus,
during a fork, the currency splits in two: an old version and a new version.

A successful fork does not merely require software engineering, but the co-
ordination of a critical mass of users. This coordination is hard to achieve in
practice. Indeed, after a fork, two ledgers exist and users are confronted with a
dilemma. How should they value each branch of the fork?

This is a coordination game where the answer is to primarily value the branch
other users are expected to primarily value. Of course, said users are likely to
follow the same strategy and value the branch for the same reason. These games
were analyzed by economist Thomas Schelling and focal points are sometimes
referred to as “Schelling points”[6].

Unfortunately, there is no guarantee that this Schelling point will be the most
desirable choice for the stakeholders, it will merely be the “default” choice. A
“default” could be to follow the lead of a core development team or the decrees
of a government regardless of their merit.

An attacker capable of changing social consensus controls the currency for
all intents and purposes. The option to stick with the original protocol is widely
irrelevant if the value of its tokens is annihilated by a consensus shift.4

Core development teams are a potentially dangerous source of centralization.
Though users can fork any open source project, that ability offers no protection
against an attacker with enough clout to alter the social consensus. Even as-
suming the likely benevolence of a core development team, it represents a weak

3not to be confused with blockchain forks which happen within a protocol
4The argument that there can never be more than 21 million bitcoin because “if a fork

raised the cap, then it wouldn’t be Bitcoin anymore” isn’t very substantive, for Bitcoin is
what the consensus says it is.

4

point on which an attacker could exercise leverage.
Tezos guards against the vulnerabilities wrought by the source of centraliza-

tion through radically decentralized protocol forks. It uses its own cryptoledger
to let stakeholders coordinate on forks. This allows coordination and enshrines
the principle that forks are not valid unless they are endogenous, making it
much harder to attack the protocol by moving the consensus.

Suppose for instance that a popular developer announces his intention to fork
Tezos without making use of the protocol’s internal procedure. “Why would he
attempt to bypass this process?” might ask stakeholders. Most certainly, be-
cause he knew that he wouldn’t be able to build consensus around his proposed
fork within Tezos.

This signals to the stakeholders that their preferred consensus would be to
reject this fork, and the Schelling point is thus to refuse it, no matter the clout
of that developer.

1.2 Shortcomings of Proof-of-Work

The proof-of-work mechanism used by Bitcoin is a careful balance of incentives
meant to prevent the double spending problem. While it has nice theoretical
properties in the absence of miner collusion, it suffers in practice from severe
shortcomings.

1.2.1 Mining Power Concentration

There are several problems with proof-of-work as a foundation for crypto-currencies.
The most salient problem, which is all too relevant as of 2014, is the existence
of centralized mining pools, which concentrate power in the hands of a few
individuals.

The proof-of-work mechanism is decentralized, which means that users do
not need to explicitly trust anyone to secure the currency. However, implicitly,
Bitcoin has yielded a system where all users have to trust the benevolence of
one or two pool operators to secure the currency.

A conspiracy of miners holding more than 50% of the hashing power is
known as 51% attack[7]. It allows the attackers to prevent transactions from
being made, to undo transactions, to steal recently minted coins and to to double
spend[8].

A centralized mint signing blocks would be just as secure, and far less waste-
ful, as a miner controlling 51% of the hashing power. If a centralized mint is
unacceptable to Bitcoin users, they should not tolerate de facto centralization
of mining power.

The concentration of mining power is no coincidence: large mining pools
face less variance in their returns than their competitors and can thus afford to
grow their operation more. In turn, this growth increases their market share
and lowers their variance.

To make things worse, the large mining pool ghash.io has hinted at a business
model where they would prioritize “premium” transactions submitted directly

5

to them. This means that large miners would earn proportionally more than
smaller miners. Sadly, p2pool has had trouble attracting hashing power as most
miners selfishly prefer the convenience of centralized mining-pools.

Many have argued that fears of market concentration are overblown. They
are generalizing hastily from the real world economy. Real businesses compete
in a rapidly changing landscape where Schumpeterian creative destruction exer-
cises constant evolutionary pressure on incumbents. Real businesses need local
knowledge, face organizational issues and principal agent problems. Bitcoin
mining is a purely synthetic economic sector centered around hashing power, a
purely fungible commodity. It would be mistaken to hastily generalize and think
that such a sterile environment is endowed with the same organic robustness
that characterizes a complex, fertile, economy.5

Furthermore, the economic argument generally holds that natural monopo-
lies have few incentives to abuse their position. The same could be said about
a Bitcoin miner — after all, why would a dominant miner destroy the value
of their investments by compromising the currency? Unfortunately, this still
creates a huge systemic risk as such miners can be compromised by a dishonest
attacker. The cost of executing a double spending attack against the network
is no more than the cost of subverting a few large mining pools.

There have been proposals intended to address this issue by tweaking the
protocol so it would be impossible for pool organizers to trust their members not
to cheat. However, these proposals only prevent pools from gathering mining
force from anonymous participants with whom there is no possibility of retali-
ation. Pooling is still possible between non-anonymous people: organizers may
operate all the mining hardware while participants hold shares, or organizers
may track cheaters by requiring inclusion of an identifying nonce in the blocks
they are supposed to hash. The result of such proposals would thus be to in-
crease variance for anonymous mining operations and to push towards further
concentration in the hands of mining cartels.

Proof-of-stake, as used by Tezos, does not suffer from this problem: inasmuch
as it is possible to hold 51% of the mining power, this implies holding 51% of the
currency, which is not only much more onerous than controlling 51% of hashing
power but implies fundamentally better incentives.

1.2.2 Bad incentives

There is an even deeper problem with proof-of-work, one that is much harder to
mitigate than the concentration of mining power: a misalignment of incentives
between miners and stakeholders.

Indeed, in the long run, the total mining revenues will be the sum of the all
transaction fees paid to the miners. Since miners compete to produce hashes,

5It is possible that a new technology will supplant ASICs who themselves replaced FPGA
boards. However, the pace of this type of innovation is nowhere fast enough to prevent miners
from forming dominating positions for long period of times; and such innovation would benefit
but a new (or the same) small clique of people who initially possess the new technology or
eventually amass the capital to repeat the same pattern.

6

the amount of money spent on mining will be slightly smaller than the revenues.
In turn, the amount spent on transactions depends on the supply and demand
for transactions. The supply of transactions on the blockchain is determined by
the block size and is fixed.

Unfortunately, there is reason to expect that the demand for transactions
will fall to very low levels. People are likely to make use of off-chain transaction
mechanisms via trusted third parties, particularly for small amounts, in order
to alleviate the need to wait for confirmations. Payment processors may only
need to clear with each other infrequently.

This scenario is not only economically likely, it seems necessary given the
relatively low transaction rate supported by Bitcoin. Since blockchain trans-
action will have to compete with off-chain transaction, the amount spent on
transactions will approach its cost, which, given modern infrastructure, should
be close to zero.

Attempting to impose minimum transaction fees may only exacerbate the
problem and cause users to rely on off-chain transaction more. As the amount
paid in transaction fees collapses, so will the miner’s revenues, and so will the
cost of executing a 51% attack. To put it in a nutshell, the security of a proof-
of-work blockchain suffers from a commons problem[9]. Core developer Mike
Hearn has suggested the use of special transactions to subsidize mining using a
pledge type of fund raising[10]. A robust currency should not need to rely on
charity to operate securely.

Proof-of-stake fixes these bad incentives by aligning the incentives of the
miners and stakeholders: by very definition, the miners are the stakeholders,
and are thus interested in keeping the transaction costs low. At the same time,
because proof-of-stake mining is not based on destruction of resources, the trans-
action cost (whether direct fees or indirect inflation) are entirely captured by
miners, who can cover their operating costs without having to compete through
wealth destruction.

1.2.3 Cost

An alternative is to keep permanent mining rewards, as Dogecoin[11] has con-
sidered. Unfortunately, proof-of-work arbitrarily increases the costs to the users
without increasing the profits of the miners, incurring a deadweight loss. Indeed,
since miners compete to produce hashes, the amount of money they spend on
mining will be slightly smaller than the revenues, and in the long run, the profits
they make will be commensurate with the value of their transaction services,
while the cost of mining is lost to everyone.

This is not simply a nominal effect: real economic goods (time in fabs,
electricity, engineering efforts) are being removed from the economy for the
sake of proof-of-work mining. As of June 2014, Bitcoin’s annual inflation stands
at a little over 10% and about $2.16M dollars are being burned daily for the
sake of maintaining a system that provides little to no security over a centralized
system in the hands of ghash.io.

The very security of a proof-of-work scheme rests on this actual cost being

7

higher than what an attacker is willing to pay, which is bound to increase with
the success of the currency.

Proof-of-stake eliminates this source of waste without lowering the cost of
attacks — indeed, it automatically scales up the cost of an attack as the currency
appreciates. Because the thing you must prove to mine is not destruction of
existing resources but provision of existing resources, a proof-of-stake currency
does not rely on destroying massive resources as it gains in popularity.

1.2.4 Control

Last but not least, the proof-of-work system puts the miners, not the stake-
holders, in charge. Forks for instance require the consent of a majority of the
miners. This poses a potential conflict of interest: a majority of miners could de-
cide to hold the blockchain hostage until stakeholders consent to a protocol fork
increasing the mining rewards; more generally, they will hold onto the hugely
wasteful system that empowers them longer than is economically beneficial for
users.

1.3 Smart Contracts

Though Bitcoin does allow for smart contracts, most of its opcodes have been
historically disabled and the possibilities are limited. Ethereum introduced a
smart contract system with some critical differences: their scripting language
is Turing complete and they substitute stateful accounts to Bitcoin’s unspent
outputs.

While emphasis has been put on the Turing complete aspect of the language,
the second property is by far the most interesting and powerful of the two. In
Bitcoin, an output can be thought of as having only two states: spent and
unspent. In Ethereum, accounts (protected by a key) hold a balance, a contract
code and a data store. The state of an account’s storage can be mutated by
making a transaction towards this account. The transaction specifies an amount
and the parameters passed to the contract code.

A downside of a Turing complete scripting language for the contracts is that
the number of steps needed to execute a script is potentially unbounded, a
property which is generally uncomputable.

To address this problem, Ethereum has devised a system by which the miner
validating the transaction requires a fee proportional to the complexity and
number of steps needed to execute the contract.

Yet, for the blockchain to be secure, all the active nodes need to validate
the transaction. A malicious miner could include in his block a transaction that
he crafted specially to run into an infinite loop and pay himself an exorbitant
fee for validating this transaction. Other miners could waste a very long time
validating this transaction. Worse, they could just slack and fail to validate it.
In practice though, most of the interesting smart contracts can be implemented
with very simple business logic and do not need to perform complex calculations.

8

Our solution is to cap the maximum number of steps that a program is
allowed to run for in a single transaction. Since blocks have a size limit that
caps the number of transactions per block, there is also a cap on the number
of computation steps per block. This rate limitation foils CPU-usage denial-of-
service attacks. Meanwhile, legitimate users can issue multiple transactions to
compute more steps than allowed in a single transaction, though at a limited
rate. Miners may decide to exclude too long of an execution if they feel the
included fee is too small. Since the Tezos protocol is amendable, the cap can be
increased in future revisions and new cryptographic primitives included in the
scripting language as the need develops.

1.4 Correctness

Bitcoin underpins a $8B valuation with a modest code base. As security re-
searcher Dan Kaminsky explains, Bitcoin looks like a security nightmare on pa-
per. A C++ code base with a custom binary protocol powers nodes connected to
the Internet while holding e-cash, sounds like a recipe for disaster. C++ programs
are often riddled with memory corruption bugs. When they are connecting to
the Internet, this creates vulnerabilities exploitable by remote attackers. E-cash
gives an immediate payoff to any attacker clever enough to discover and exploit
such a vulnerability.

Fortunately, Bitcoin’s implementation has proven very resilient to attacks
thus far, with some exceptions. In August 2010, a bug where the sum of two
outputs overflowed to a negative number allowed attackers to create two out-
puts of 92233720368.54 coins from an input of 0.50 coins. More recently, massive
vulnerabilities such as the heartbleed bug have been discovered in the OpenSSL
libraries. These vulnerabilities have one thing in common, they happened be-
cause languages like C and C++ do not perform any checks on the operations
they perform. For the sake of efficiency, they may access random parts of the
memory, add integers larger than natively supported, etc. While these vulner-
abilities have spared Bitcoin, they do no not bode well for the security of the
system.

Other languages do not exhibit those problems. OCaml is a functional pro-
gramming language developed by the INRIA since 1996 (and itself based on
earlier efforts). Its speed is comparable to that of C++ and it generally features
among the fastest programming languages in benchmarks[12]. More impor-
tantly, OCaml is strongly typed and offers a powerful type inference system.
Its expressive syntax and semantics, including powerful pattern matching and
higher-order modules, make it easy to concisely and correctly describe the type
of logic underpinning blockchain based protocols.

OCaml’s semantic is fairly rigorous and a very large subset has been formalized[13],
which removes any ambiguity as to what is the intended behavior of amend-
ments.

In addition, Coq, one of the most advanced proof checking software is able
to extract OCaml code from proofs. As Tezos matures, it will be possible to
automatically extract key parts of the protocol’s code from mathematical proofs

9

of correctness.
Examples of spectacular software failure abound. The heartbleed bug caused

millions of dollars in damages. In 2013, a single bug at high-frequency trading
firm Knight capital caused half a billion dollars worth of losses. In 1996, an
arithmetic overflow bug caused the crash of Ariane 5, a rocket that had cost
$7B to develop; the cost of the rocket and the cargo was estimated at $500M.

All of these bugs could have been prevented with the use of formal verifica-
tion. Formal verification has progressed by leaps and bounds in recent years, it
is time to use it in real systems.

2 Abstract Blockchains

Tezos attempts to represent a blockchain protocol in the most general way
possible while attempting to remain as efficient as a native protocol. The goal
of a blockchain is to represent a single state being concurrently edited. In
order to avoid conflicts between concurrent edits, it represents the state as a
ledger, that is as a series of transformations applied to an initial state. These
transformations are the “blocks” of the blockchain, and — in the case of Bitcoin
— the state is mostly the set of unspent outputs. Since the blocks are created
asynchronously by many concurrent nodes, a block tree is formed. Each leaf of
the tree represents a possible state and the end of a different blockchain. Bitcoin
specifies that only one branch should be considered the valid branch: the one
with the greatest total difficulty. Blocks, as their name suggests, actually bundle
together multiple operations (known as transactions in the case of Bitcoin).
These operations are sequentially applied to the state.

2.1 Three Protocols

It is important to distinguish three protocols in cryptoledgers: the network
protocol, the transaction protocol, and the consensus protocol.

The role of the meta shell is to handle the network protocol in as agnostic a
way as possible while delegating the transaction and consensus protocol to an
abstracted implementation.

2.1.1 Network Protocol

The network protocol in Bitcoin is essentially the gossip network that allows
the broadcasting of transactions, the downloading and publishing of blocks, the
discovery of peers, etc. It is where most development occurs. For instance,
bloom filters were introduced in 2012 through BIP0037 to speed up the simple
payment verification for clients which do not download the whole blockchain.

Changes to the network protocol are relatively uncontroversial. There may
be initial disagreements on the desirability of these changes, but all parties
interests are fundamentally aligned overall.

These changes do not need to happen in concert either. One could devise
a way to integrate Bitcoin transactions steganographically into pictures of cats

10

posted on the Internet. If enough people started publishing transactions this
way, miners would start parsing cat pictures to find transactions to include in
the blockchain.

While a healthy network requires compatibility, competing innovation in the
network protocol generally strengthens a cryptocurrency.

2.1.2 Transaction Protocol

The transaction protocol describes what makes transactions valid. It is defined
in Bitcoin, for instance, through a scripting language. First, coins are created
by miners when they find a block. The miner then attaches a script to the coins
that he mined.

Such a script is known as an “unspent output”. Transactions combine out-
puts by providing arguments for which their scripts evaluate to true. These
arguments can be thought of keys and the scripts as padlocks.

In simple transactions, such scripts are merely signature-checking scripts but
more complex scripts can be formed. These outputs are added up and allocated
among a set of new outputs. If the amount of output spent is greater than the
amount allocated, the difference can be claimed by the miner.

Changes to the transaction protocol are more controversial than changes to
the network protocol. While a small group of people could unilaterally start
using the cat-picture broadcast algorithm, changing the transaction protocol is
trickier. Such changes typically do not affect the block validity and thus only
require the cooperation of a majority of the miners. These are generally referred
to as “soft-fork”.

Some relatively uncontroversial changes still stand a chance to be imple-
mented there. For instance a fix to the transaction malleability issue would be
a transaction protocol level change. The introduction of Zerocash, also a trans-
action protocol level change, risks being too controversial to be undertaken.

2.1.3 Consensus Protocol

The consensus protocol of Bitcoin describes the way consensus is built around
the most difficult chain and the miner reward schedules. It allows miners to
draw transactions from the coin base, it dictates how difficulty changes over
time, it indicates which blocks are valid and which are part of the “official”
chain.

This is by far the most central and most difficult to change protocol, often
requiring a “hard-fork”, that is a fork invalidating old blocks. For instance, the
proof of work system, as is the reliance on SHA256 as a proof-of-work system,
etc.

2.2 Network Shell

Tezos separates these three protocols. The transaction protocol and the con-
sensus protocol are implemented in an isolated module plugged into a generic

11

network shell responsible for maintaining the blockchain.
In order for the protocol to remain generic, we define the following interface.

We want our blockchain to represent the current “state” of the economy, which
we call in Tezos the Context. This could include the balances of the various
accounts and other informations such as the current block number. Blocks are
seen as operators that transform an old state into a new state.

In this respect, a protocol can be described by only two functions:

- apply which takes a Context and a block and returns either a valid Con-
text or an invalid result (should the block be invalid)

- score which takes a Context and returns a score allowing us to compare
various leafs of the blockchain to determine the canonical one. In Bitcoin,
we would simply record the total difficulty or the chain inside the Context
and return this value.

Strikingly, these two functions alone can implement any blockchain based
crypto-ledger. In addition, we attach those functions to the context itself and
expose the following two functions to the protocol:

- set test protocol which replaces the protocol used in the test-net with a
new protocol (typically one that has been adopted through a stakeholder
voter).

- promote test protocol which replaces the current protocol with the
protocol currently being tested

These two procedures allow the protocol to validate its own replacement.
While the seed protocol relies on a simple super-majority rule with a quorum,
more complex rules can be adopted in the future. For instance, the stakeholders
could vote to require certain properties to be respected by any future protocol.
This could be achieved by integrating a proof checker within the protocol and
requiring that every amendment include a proof of constitutionality.

3 Proof-of-Stake

Tezos can implement any type of blockchain algorithm: proof-of-work, proof-of-
stake, or even centralized. Due to the shortcomings of the proof-of-work mech-
anism, the Tezos seed protocol implements a proof-of-stake system. There are
considerable theoretical hurdles to designing a working proof-of-stake systems,
we will explain our way of dealing with them.6

3.1 Is Proof-of-Stake Impossible?

There are very serious theoretical hurdles to any proof-of-stake system. The
main argument against the very possibility of a proof-of-stake system is the

6A full, technical, description of our proof-of-stake system is given in the Tezos white paper.

12

following: a new user downloads a client and connects for the first time to the
network. He receives a tree of blocks with two larges branches starting from
the genesis hash. Both branches display a thriving economic activity, but they
represent two fundamentally different histories. One has clearly been crafted by
an attacker, but which one is the real chain?

In the case of Bitcoin, the canonical blockchain is the one representing the
largest amount of work. This does not mean that rewriting history is impossible,
but it is costly to do so, especially as one’s hashing power could be used towards
mining blocks on the real blockchain. In a proof-of-stake system where blocks
are signed by stakeholders, a former stakeholder (who has since cashed out)
could use his old signatures to costlessly fork the blockchain — this is known as
the nothing-at-stake problem.

3.2 Mitigations

While this theoretical objection seems ironclad, there are effective mitigations.
An important insight is to consider that there are roughly two kind of forks: very
deep ones that rewrite a substantial fraction of the history and short ones that
attempt to double spend. On the surface there is only a quantitative difference
between the two but in practice the incentives, motivations, and mitigation
strategies are different.

No system is unconditionally safe, not Bitcoin, not even public key cryptog-
raphy. Systems are designed to be safe for a given threat model. How well that
model captures reality is, in fine, an empirical question.

3.2.1 Checkpoints

Occasional checkpoints can be an effective way to prevent very long blockchain
reorganizations. Checkpoints are a hack. As Ben Laurie points out, Bitcoin’s
use of checkpoints taints its status as a fully decentralized currency[14].

Yet, in practice, annual or even semi-annual checkpoints hardly seem prob-
lematic. Forming a consensus over a single hash value over a period of months
is something that human institutions are perfectly capable of safely accomplish-
ing. This hash can be published in major newspapers around the world, carved
on the tables of freshmen students, spray painted under bridges, included in
songs, impressed on fresh concrete, tattooed on pet ferrets... there are countless
ways to record occasional checkpoints in a way that makes forgery impossible.
In contrast, the problem of forming a consensus over a period of minutes is more
safely solved by a decentralized protocol.

3.2.2 Statistical Detection

Transactions can reference blocks belonging to the canonical blockchain, thus
implicitly signing the chain. An attacker attempting to forge a long reorga-
nization can only produce transactions involving coins he controlled as off the
last checkpoint. A long, legitimate, chain would typically show activity in a

13

larger fraction of the coins and can thus be distinguished, statistically, from the
forgery.

This family of techniques (often called TAPOS, for “transactions as proof
of stake”) does not work well for short forks where the sample is too small
to perform a reliable statistical test. However, they can be combined with a
technique dealing with short term forks to form a composite selection algorithm
robust to both type of forks.

3.3 The Nothing-At-Stake Problem

An interesting approach to solving the nothing-at-stake problem was outlined
by Vitalik Buterin in the algorithm Slasher[15]. However, Slasher still relies on
a proof of work mechanism to mine blocks and assumes a bound on the length
of feasible forks.

We retain the main idea which consists in punishing double signers. If sign-
ing rewards are delayed, they can be withheld if any attempt at double spending
is detected. This is enough to prevent a selfish stakeholder from opportunisti-
cally attempting to sign a fork for the sake of collecting a reward should the
fork succeed. However, once rewards have been paid, this incentive to behave
honestly disappears; thus, we use a delay long enough for TAPOS to become
statistically significant or for checkpointing to take place.

In order to incentivize stakeholders to behave honestly, we introduce a ticker
system. A prospective miner must burn a certain amount of coins in order to
exercise his mining right. This amount is automatically returned to him if he
fails to mine, or after a long delay.

In order to allow stakeholders not to be permanently connected to the In-
ternet and not to expose private keys, a different, signature key is used.

3.4 Threat Models

No system is unconditionally safe, not Bitcoin, not even public key cryptography.
Systems are designed to be safe for a given threat model. How well that model
captures reality is, in fine, an empirical question.

Bitcoin does offer an interesting guarantee: it attempts to tolerate amoral
but selfish participants. As long as miners do not collude, it is not necessary to
assume that any participant is honest, merely than they prefer making money
to destroying the network. However, non collusion, a key condition, is too
often forgotten, and the claim of Bitcoin’s “trustlessness” is zealously repeated
without much thought.

With checkpointing (be it yearly), the same properties can be achieved by a
proof-of-stake system.

Without checkpointing proof-of-stake systems cannot make this claim. In-
deed, it would be theoretically possible for an attacker to purchase old keys
from a large number of former stakeholders, with no consequence to them. In
this case, a stronger assumption is needed about participants, namely that a
majority of current or former stakeholders cannot be cheaply corrupted into

14

participating in an attack on the network. In this case, the role “stake” in
the proof-of-stake is only to avoid adverse selection by malicious actors in the
consensus group.

4 Potential Developments

In this section, we explore some ideas that we’re specifically interested in inte-
grating to the Tezos protocol.

4.1 Privacy Preserving Transactions

One of the most pressing protocol updates will be the introduction of privacy
preserving transactions. We know of two ways to achieve this: ring signatures
and non-interactive zero-knowledge proofs of knowledge (NIZKPK).

4.1.1 Ring Signatures

CryptoNote has built a protocol using ring signatures to preserve privacy. Users
are able to spend coins without revealing which of N addresses spent the coins.
Double spenders are revealed and the transaction deemed invalid. This works
similarly to the coin-join protocol without requiring the cooperation of the ad-
dresses involved in obfuscating the transaction.

One of the main advantage of ring signatures is that they are comparatively
simpler to implement than NIZKPK and rely on more mature cryptographic
primitives which have stood the test of time.

4.1.2 Non Interactive Zero-knowledge Proofs of Knowledge

Matthew Green et al. proposed the use of NIZKPK to achieve transaction
untraceability in a blockchain based cryptocurrency. The latest proposition,
Zerocash, maintains a set of coins with attached secrets in a Merkle tree. Com-
mitted coins are redeemed by providing a NIZKPK of the secret attached to a
coin in the tree. It uses a relatively new primitive, SNARKs, to build very small
proofs which can be efficiently checked.

This technique is attractive but suffers from drawbacks. The cryptographic
primitives involved are fairly new and have not been scrutinized as heavily as
the relatively simple elliptic curve cryptography involved in Bitcoin.

Secondly, the construction of these proofs relies on the CRS model. This
effectively means that a trusted setup is required, though the use of secure
multi-party computation can reduce the risk that such a setup be compromised.

4.2 Amendment Rules

4.2.1 Constitutionalism

While this is more advanced, it is possible to integrate a proof checker within
the protocol so that only amendments carrying a formal proof that they re-

15

spect particular properties can be adopted. In effect this enforces a form of
constitutionality.

4.2.2 Futarchy

Robin Hanson has proposed that we vote on values and bet on beliefs. He calls
such a system “Futarchy”[16]. The main idea is that values are best captured
by a majoritarian consensus while the choice of policies conducive to realizing
those values is best left to a prediction market.

This system can quite literally be implemented in Tezos. Stakeholders would
first vote on a trusted datafeed representing the satisfaction of a value. This
might be, for example, the exchange rate of coins against a basket of interna-
tional currencies. An internal prediction market would be formed to estimate the
change in this indicator conditional on various code amendments being adopted.
The market-making in those contracts can be subsidized by issuing coins to mar-
ket makers in order to improve price discovery and liquidity. In the end, the
amendment deemed most likely to improve the indicator would be automatically
adopted.

4.3 Solving Collective Action Problems

The collective action problem arises when multiple parties would benefit from
taking an action but none benefit from individually undertaking the action.
This is also known as the free-rider problem. There are several actions that
the holders of a cryptocurrency could undertake to raise its profile or defend it
against legal challenges.

4.3.1 Raising Awareness

As of July 2014, the market capitalization of Bitcoin was around $8B. By spend-
ing about 0.05% of the Bitcoin monetary mass every month, Bitcoin could make
highly visible charitable donations of $1M every single week. Would, as of 2014,
an entire year of weekly charitable donations raise the value of Bitcoin by more
than 0.6%? We think the answer is clearly, and resoundingly “yes”. Bitcoin
stakeholders would be doing well while doing good.

However, Bitcoin stakeholders are unable to undertake such an operation
because of the difficulty of forming large binding contracts. This type of col-
lective action problem is solved in Tezos. A protocol amendment can set up
a procedure by which stakeholders may vote every month on a few addresses
where 0.05% of the monetary mass would be spent. The stakeholder’s consensus
might be to avoid dilution by voting on an invalid address, but it could also be
that the money would be better spent as a charitable gift.

4.3.2 Funding Innovation

Financing of innovation would also be facilitated by incorporating bounties di-
rectly within the protocol. A protocol could define unit tests and automatically

16

reward any code proposal that passes these tests.
Conversely, an innovator designing a new protocol could include a reward to

himself within the protocol. While his protocol could be copied and the reward
stripped, the stakeholder’s consensus would likely be to reward the original
creator. Stakeholders are playing a repeated game and it would be foolish to
defect by refusing a reasonable reward.

Conclusion

We’ve presented issues with the existing cryptocurrencies and offered Tezos as
a solution. While the irony of preventing the fragmentation of cryptocurrencies
by releasing a new one does not escape us, Tezos truly aims to be the last
cryptocurrency.

No matter what innovations other protocols produce, it will be possible for
Tezos stakeholders to adopt these innovations. Furthermore, the ability to solve
collective action problems and easily implement protocols in OCaml will make
Tezos one of the most reactive cryptocurrency.

References

[1] Peter Suber. Nomic: A game of self-amendment. http://legacy.

earlham.edu/~peters/writing/nomic.htm, 1982.

[2] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, 2008.

[3] Vitalik Buterin et al. A next-generation smart contract and decentral-
ized application platform. https://github.com/ethereum/wiki/wiki/

%5BEnglish%5D-White-Paper, 2014.

[4] Nicolas van Saberhagen. Cryptonote v 2.0. https://cryptonote.org/

whitepaper.pdf, 2013.

[5] Matthew Green et al. Zerocash: Decentralized anonymous pay-
ments from bitcoin. http://zerocash-project.org/media/pdf/

zerocash-extended-20140518.pdf, 2014.

[6] Thomas Schelling. The Strategy of conflict. Cambridge: Harvard University
Press, 1960.

[7] Bitcoin Wiki. Weaknesses. https://en.bitcoin.it/wiki/Attacks#

Attacker_has_a_lot_of_computing_power, 2014.

[8] Gaving Andresen. Centralized mining. http://bitcoinfoundation.org/
centralized-mining/, 2014.

[9] Bitcoin Wiki. Tragedy of the commons. https://en.bitcoin.it/wiki/

Tragedy_of_the_Commons, 2014.

17

http://legacy.earlham.edu/~peters/writing/nomic.htm
http://legacy.earlham.edu/~peters/writing/nomic.htm
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://en.bitcoin.it/wiki/Attacks#Attacker_has_a_lot_of_computing_power
https://en.bitcoin.it/wiki/Attacks#Attacker_has_a_lot_of_computing_power
http://bitcoinfoundation.org/centralized-mining/
http://bitcoinfoundation.org/centralized-mining/
https://en.bitcoin.it/wiki/Tragedy_of_the_Commons
https://en.bitcoin.it/wiki/Tragedy_of_the_Commons

[10] Bitcoin Wiki. Dominant assurance contracts. https://en.bitcoin.it/

wiki/Dominant_Assurance_Contracts, 2014.

[11] Simon de la Rouviere. Not actually capped at 100 billion? https://

github.com/dogecoin/dogecoin/issues/23, 2013.

[12] Debian project. Computer language benchmarks game. http://

benchmarksgame.alioth.debian.org/u32/index.html, 2014.

[13] Scott Owens. A sound semantics for ocaml light. http://www.cl.cam.ac.
uk/~so294/ocaml/paper.pdf, 2008.

[14] Ben Laurie. Decentralised currencies are probably impossible, but
let’s at least make them efficient. http://www.links.org/files/

decentralised-currencies.pdf, 2011.

[15] Vitalik Buterin. Slasher: A punitive proof-of-stake al-
gorithm. https://blog.ethereum.org/2014/01/15/

slasher-a-punitive-proof-of-stake-algorithm/, 2014.

[16] Robin Hanson. Shall we vote on values, but bet on beliefs? http://mason.

gmu.edu/~rhanson/futarchy2013.pdf, 2013.

18

https://en.bitcoin.it/wiki/Dominant_Assurance_Contracts
https://en.bitcoin.it/wiki/Dominant_Assurance_Contracts
https://github.com/dogecoin/dogecoin/issues/23
https://github.com/dogecoin/dogecoin/issues/23
http://benchmarksgame.alioth.debian.org/u32/index.html
http://benchmarksgame.alioth.debian.org/u32/index.html
http://www.cl.cam.ac.uk/~so294/ocaml/paper.pdf
http://www.cl.cam.ac.uk/~so294/ocaml/paper.pdf
http://www.links.org/files/decentralised-currencies.pdf
http://www.links.org/files/decentralised-currencies.pdf
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
http://mason.gmu.edu/~rhanson/futarchy2013.pdf
http://mason.gmu.edu/~rhanson/futarchy2013.pdf

	Motivation
	The Protocol Fork Problem
	Keeping Up With Innovation
	Economics of Forks

	Shortcomings of Proof-of-Work
	Mining Power Concentration
	Bad incentives
	Cost
	Control

	Smart Contracts
	Correctness

	Abstract Blockchains
	Three Protocols
	Network Protocol
	Transaction Protocol
	Consensus Protocol

	Network Shell

	Proof-of-Stake
	Is Proof-of-Stake Impossible?
	Mitigations
	Checkpoints
	Statistical Detection

	The Nothing-At-Stake Problem
	Threat Models

	Potential Developments
	Privacy Preserving Transactions
	Ring Signatures
	Non Interactive Zero-knowledge Proofs of Knowledge

	Amendment Rules
	Constitutionalism
	Futarchy

	Solving Collective Action Problems
	Raising Awareness
	Funding Innovation

